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What is Argoverse?
- A set of three datasets designed to support autonomous vehicle perception tasks 

including 3D tracking and motion forecasting.

- One dataset with 3D tracking annotations for 113 scenes

- One dataset with 324,557 unusual vehicle trajectories extracted from over 1000 

driving hours (motion forecasting)

- Two high-definition (HD) maps with lane centerlines, traffic direction, ground 

height, and more

- Data collected from Miami (204 linear km) and Pittsburgh (86 linear km)

- One API to connect the map data with sensor information



3 Parts to Argoverse’s Dataset
- High-definition maps 

- 3D tracking 

- Motion forecasting

Ruhi Kore

Schematic of car’s sensors (2 roof-mounted LiDAR 
sensors, 7 ring cameras, 2 forward stereo cameras



#1 Maps

Ruhi Kore

Vector Map: Lane-Level 
Geometry

Rasterized Map: Drivable Area

Rasterized Map: Ground Height

● “180 miles of mapped lanes contain rich geometric and semantic metadata not currently available in 
any public dataset”



Vector Map: Lane-Level Geometry
● Provide a number of semantic attributes

○ lane centerlines (split into lane segments)
○ traffic direction (left, right, or none)
○ whether a lane is located within an intersection 
○ has an associated traffic control measure (boolean values)
○ unique identifiers for the lane’s predecessors

● Each straight segment is defined by 2 vertices: (x, y, z) start and (x, 
y, z) end. Thus, curved lanes are approximated with a set of straight 
lines

● Observations include that vehicle trajectories generally follow the 
center of the lane

● Can classify roads based on their suitability of self-driving



Code & Data for Vector Maps

Coordinates of Each of the Road Segments ~ Nodes



Rasterized Map: Drivable Area

● Converting raw data from LiDAR sensors to visual 
‘rasterized data’

● Include binary drivable area labels at one-meter grid 
resolution (+/- 0.5 m)

● Drivable Area: an area in which it is possible for a 
vehicle to drive (but not necessarily legally)
○ Ex. A road’s shoulder

● Track annotations extend to five meters beyond the 
drivable area, called the “region of interest”



Code for Rasterized Map: Drivable Area



Drivable Data Visualized from Data in the Matrix

Accumulating LiDAR points and projecting 
them to  a virtual image plane

LiDAR points beyond driveable area are 
dimmed. Points near the ground are in cyan. 
Cuboid object annotations & road centerlines 

are shown in pink and yellow.



An intersection with a slight slant 
(depicted by color gradient)

Rasterized Map: Ground Height
● Uses LiDAR to determine the real-valued ground height at 

one-meter resolution (+/- 0.5 m)
● Able to identify cars, obstructions, slant/rise of roads, etc.
● Scenes containing uneven ground are removed through 

processing techniques (the explicit assumption is that the 
ground is flat/planar)



#2 3D Tracking
● These short video log segments are 15-30 

seconds, which help us apply CNNs that aid in 

object segmentation.

● Help us with the understanding of the movement 

of the objects on the road. 

● 30 fps, 360 degree view

● 10,000 tracked objects (like cars, pedestrians, 

signs, etc)

● https://www.argoverse.org/data.html#tracking-link

https://www.argoverse.org/data.html#tracking-link


How the Data is Trained
Given a sequence of F frames, each frame contains set of 3D points from LiDAR {Pi | i = 1, ..., N}, where 
Pi ∈ R3 of x, y, z coordinates, we want to determine a set of track hypothesis {Tj | j = 1, ..., n} where n is 
the number of unique objects in the whole sequence, and Tj contains the set of object center locations 
at frames f for f = {fstart, ..., fend}, the range of frames where the object is visible

● From f frames, we get a set of points that have 3 dimensions to them, and we want to obtain a 
hypothesis where we classify each of the objects into different classes and train our model to find 
the center points and learn to make the bounding boxes

● It uses Mask R-CNNs to classify each of the objects. This classification is based on Faster/ Fast 
CNNs which learns bounding boxes for objects. 



● The model doesn’t use IoU which is more commonly used for object classification, it rather uses, 
the Euclidean distance between the objects to identify multiple objects in one image. It is more 
effective in this case.

● It also uses drivable area, ground removal, lane direction to assist the model in 3d tracking as we 
see



Results of 3D Tracking
Baseline tracker is compared with 3 modifications

★ Mask-RCNN dramatically improves our detection 
performance by reducing false positives.

★ Map-based ground removal leads to slightly better 
detection performance (higher MOTA) than a 
plane-fitting approach at longer ranges

★ lane direction from the map doesn’t affect our metrics 
(based on centroid distance), but it helps initialize vehicle 
direction





#3 Motion Forecasting

● First step is to localize the object on the vector map

● The next steps in forecasting are

○ Hypothesis phase

○ Generation phase 

● We use BFS to generate trajectories in the map which makes generation phase easy to run

● The problem is that trajectories are more complicated because of the multimodal nature of the problem, 
e.g. it’s difficult to know which lane segment a vehicle will follow in an intersection.

● Demonstration: https://www.argoverse.org/index.html

https://www.argoverse.org/index.html




Motion Forecasting: Multimodal Evaluation
● Forecasting Task: Observe 20 past frames (2 seconds) and then predicting 

10-30 frames (1-3 seconds) into the future
● Incorporate both social and spatial context to predict outcome
● Output: a semantic graph

○ Important to predict many possible outcomes and not just the most likely outcome

● On average, the heuristics generate 5.9 separate hypotheses for possible 
vehicle trajectories
○ Compact yet diverse set of forecasts



Motion Forecasting: Trajectory Prediction
- Evaluated the effectiveness of numerous models in correctly 

predicting the outcome.
- Ex. Evaluate the effect of adding social context

- Different combinations of Constant Velocity, Nearest Neighbor 
(NN), Map (with various centerlines), LSTM (Long Short-Term 
Memory) Encoder-Decoder Model, Social Context

- LSTM Encoder-Decoder: A specific RNN designed to address 
sequence-to-sequence problems (forecasting the next value in 
a real-valued sequence)

- Social Context: Interacting with pedestrians, leaving space 
between the next car, etc. (social norms but with vehicles)



Trajectory Prediction - Results
- Constant Velocity was outperformed by all other behaviors

- Failed to capture typical driving behavior (acceleration, deceleration, turns, etc.)
- LSTM ED + social performs similar to LSTM ED

- Social context does not add significant value to forecasting
- NN+map has a lower error than LSTM ED+social and LSTM ED

- Even a shallow model working on top of a vector map works better than a deep model with social 
features and no vector map.



Example: LSTM Encoder-Decoder + Map

 The model correctly 
predicts that the car will 

go straight at the 
intersection.

Demonstration of the 
multimodal nature of 

predictions, where the 
model considers all top-K 

possibilities. 

The model correctly 
predicts a smooth right 
turn never going out of 
the lane, which might have 
been difficult if there were 
no map.

 The predictions are on a 
non-typical lane which 
takes a slight left and then 
a slight right. Again, this is 
hard to predict without a 
map.



Next Steps

● Training the Argoverse data
● Adjusting our Unreal model to Argoverse and building direct simulations 

taking parts of their projections


