Argoverse
by Argo.ai

Mehul Varma

What is Argoverse?

- A set of three datasets designed to support autonomous vehicle perception tasks

including 3D tracking and motion forecasting.
- One dataset with 3D tracking annotations for 113 scenes

- One dataset with 324,557 unusual vehicle trajectories extracted from over 1000

driving hours (motion forecasting)

- Two high-definition (HD) maps with lane centerlines, traffic direction, ground

height, and more

- Data collected from Miami (204 linear km) and Pittsburgh (86 linear km)

- One API to connect the map data with sensor information

3 Parts to Argoverse's Dataset

- High-definition maps
- 3D tracking

- Motion forecasting

Schematic of car’s sensors (2 roof-mounted LiDAR
sensors, 7 ring cameras, 2 forward stereo cameras

#1 Maps

e “180 miles of mapped lanes contain rich geometric and semantic metadata not currently available in
any public dataset”

= —_—:.l_‘~’:5p Tl Z ‘X
23
{2 e

Vector Map: Lane-Level
Geometry

Vector Map: Lane-Level Geometry

e Provide a number of semantic attributes i I
o lane centerlines (split into lane segments) | __q__/]' F
o traffic direction (left, right, or none) ? /72 'f-z'f.'“;"l‘ =
o whether a lane is located within an intersection = e
o has an associated traffic control measure (boolean values) o “"l Mf

o unique identifiers for the lane’s predecessors b3
e Each straight segment is defined by 2 vertices: (x, y, z) start and (x, ?'5" |
y, 2) end. Thus, curved lanes are approximated with a set of straight
lines
e Observations include that vehicle trajectories generally follow the
center of the lane
e Can classify roads based on their suitability of self-driving

Code & Data

class LaneSegment:

def __init_ (
self,
jide Ant;
has_traffic_control: bool,
turn_direction: str,
is_intersection: bool,
1 neighbor_id: Optional[int],
r_neighbor_id: Optional[int],
predecessors: Sequence[int],
successors: Optional[Sequence[int]],
centerline: np.ndarray,

) -> None:

"""Initialize the lane segment.

Args:

id: Unique lane ID that serves as identifier for this "way"

has_traffic_control:
turn_direction: 'RIGHT', 'LEFT', or

"NONE'

for Vector Maps

is_intersection: Whether
1_neighbor_id: Unique ID

r neinhhar did: lininue TN

or not this lane segment is an intersection
for left neighbor

far rianht neinhhnr

class Node:
Wi
e.g. a point of interest, or a constituent point of a
line feature such as a road

Wi

def __init_ (self, id: int, x: float, y: float, height: Optional[float] = None):

Args:
id: representing unique node ID
X: x-coordinate in city reference system

y: y-coordinate in city reference system

Returns:
None
Wi
self.id = id
self.x = x
self.y = y
self.height = height

' encoding="'UTF-8'7>|

252.05857658141758" y="1783.094199654879" />
X="252.2491120869268" y="1781.4253478064977
x="252.43964759243602" "1779.7564959581164"
X="252.6301830979452"

e id="4" x="252.82071860345442"
id="5" x="253.01125410896364"
e id="6" x="253.20178961447286"
i x="253.39232511998205"
X="253.58286062549126" .743384867829
id="9" x="253.77339613100048" y= .0745330194477" />
e id="10" x="257.386197283864" y="1768.1909449379891"/>

.4187922613542"
.7499404129726"
.0810885645915"
.4122367162104"

Coordmates of Each of the Road Segments ~ Nodes

Rasterized Map: Drivable Area

Converting raw data from LiDAR sensors to visual
‘rasterized data’
Include binary drivable area labels at one-meter grid
resolution (+/- 0.5 m)
Drivable Area: an area in which it is possible for a
vehicle to drive (but not necessarily legally)

o Ex. Aroad’s shoulder
Track annotations extend to five meters beyond the
drivable area, called the “region of interest”

Code for Rasterized Map: Drivable Area

def build_city_driveable_area_roi_index(self) —> Mapping[str, Mapping[str, np.ndarray]l:

Load driveable area files from disk. Dilate driveable area to get ROI (takes about 1/2 second).

~ Returns:
city_rasterized_da_dict: a dictionary of dictionaries. Key is city_name, and
value is a dictionary with driveable area info. For example, includes da_matrix: Numpy array of
shape (M,N) representing binary values for driveable area
city_to_pkl_image_se2: SE(2) that produces takes point in pkl image to city coordinates, e.g.
p_city = city_Transformation_pklimage * p_pklimage

city_rasterized_da_roi_dict: Dict[str, Dict[str, np.ndarrayl] = {}

for city_name, city_id in self.city_name_to_city_id_dict.items():
city_id = self.city_name_to_city_id_dict[city_name]
city_rasterized_da_roi_dict[city_name] = {}
npy_fpath = MAP_FILES_ROOT / f"{city_name}_{city_id}_driveable_area_mat_2019_05_28.npy"
city_rasterized_da_roi_dict[city_namel ["da_mat"] = np.load(npy_fpath)

se2_npy_fpath = MAP_FILES_ROOT / f"{city_name}_{city_id}_npyimage_to_city_se2_2019_05_28.npy"
city_rasterized_da_roi_dict[city_namel ["npyimage_to_city_se2"] = np.load(se2_npy_fpath)

da_mat = copy.deepcopy(city_rasterized_da_roi_dict[city_name] ["da_mat"])
city_rasterized_da_roi_dict[city_namel ["roi_mat"] = dilate_by_l2(da_mat, dilation_thresh=ROI_ISOCONTOUR)

LiDAR points beyond driveable area are
dimmed. Points near the ground are in cyan.
Accumulating LIDAR points and projecting Cuboid object annotations & road centerlines
them to a virtual image plane are shown in pink and yellow.

Drivable Data Visualized from Data in the Matrix

Rasterized Map: Ground Height

Uses LiDAR to determine the real-valued ground height at
one-meter resolution (+/- 0.5 m)

Able to identify cars, obstructions, slant/rise of roads, etc.
Scenes containing uneven ground are removed through
processing techniques (the explicit assumption is that the

ground is flat/planar)

An intersection with a slight slant
(depicted by color gradient)

2 3D Tracking

These short video log segments are 15-30
seconds, which help us apply CNNs that aid in
object segmentation.

Help us with the understanding of the movement
of the objects on the road.

30 fps, 360 degree view

10,000 tracked objects (like cars, pedestrians,
signs, etc)

https://www.argoverse.org/data.html#tracking-link

https://www.argoverse.org/data.html#tracking-link

How the Data is Trained

Given a sequence of F frames, each frame contains set of 3D points from LIDAR{Pi[i =1, ..., N}, where
Pi € R3 of x, y, z coordinates, we want to determine a set of track hypothesis {Tj [j =1, ..., n} where n is
the number of unique objects in the whole sequence, and Tj contains the set of object center locations
at frames f for f = {fstart, ..., fend}, the range of frames where the object is visible

e From f frames, we get a set of points that have 3 dimensions to them, and we want to obtain a
hypothesis where we classify each of the objects into different classes and train our model to find
the center points and learn to make the bounding boxes

e [t uses Mask R-CNNs to classify each of the objects. This classification is based on Faster/ Fast
CNNs which learns bounding boxes for objects.

The model doesn’t use loU which is more commonly used for object classification, it rather uses,
the Euclidean distance between the objects to identify multiple objects in one image. It is more
effective in this case.

It also uses drivable area, ground removal, lane direction to assist the model in 3d tracking as we
see

"" Object Class mapping dictionary."""
O0BJ_CLASS_MAPPING_DICT = {
"VEHICLE": ©,
"PEDESTRIAN": 1,
"ON_ROAD_OBSTACLE": 2,
"LARGE_VEHICLE": 3,
“BICYCLE": 4,

BICYCLIST": 5,
YBUS™E 65
"OTHER_MOVER": 7,
' "TRAILER": 8,
"MOTORCYCLIST": 9,
"MOPED": 10,
0 _ .- "MOTORCYCLE": 11,

“STROLLER": 12,
"EMERGENCY_VEHICLE": 13,
"ANIMAL": 14,
"WHEELCHAIR": 15,
"SCHOOL_BUS": 16,

EN
= 13

5

S

vehicle -|
pedestrian -
other_static -|
large vehicle -|
bicycle -|
bicyclist -|
other_mover -|
trailer -
motorcyclist -
moped -|
motorcycle -
stroller -|
animal -|
wheelchair -}
school_bus -

emergency_vehicle -|

Results of 3D Tracking

Baseline tracker is compared with 3 modifications

*

*

Mask-RCNN dramatically improves our detection
performance by reducing false positives.

Map-based ground removal leads to slightly better
detection performance (higher MOTA) than a
plane-fitting approach at longer ranges

lane direction from the map doesn’t affect our metrics
(based on centroid distance), but it helps initialize vehicle
direction

(a) without lane information (b) with lane information

Figure 7: Tracking with orientation snapping. Using lane
direction information helps to determine the vehicle orien-
tation for detection and tracking. Ground truth cuboids are
green.

RANGE USE USE GROUND MOTA MOTP IDF1 MT(%) ML(%) #FP #FN IDsw #FRAG
THRESHOLD MASK-RCNN MAP LLANE REMOVAL
Y Y map 37.98 0.52 0.46 0.10 0.51 105.40 2455.30 32.55 22.35
100 m N Y map 16.42 0.54 0.46 0.16 0.41 1339.95 1972.95 43.30 29.65
4 N map 37.95 0.52 0.46 0.10 0.51 105.30 2454.85 32.35 2245
Y. Y plane-fitting 37.36 0.53 0.46 0.10 0.53 105.20 2484.00 31.10 21.25
Y Y map 52.74 0.52 0.58 0.22 0.29 99.70 1308.25 31.60 21.65
50 m N Y map 21.53 0.54 0.55 0.38 0.18 1197.30 897.90 37.85 24.60
Y N map 52.70 0.52 0.58 0.22 0.29 99.50 1307.75 31.40 21.75
Y Y plane-fitting 52.05 0.53 0.58 0.20 0.31 98.10 1335.65 30.15 20.45
Y Y map 73.02 0.53 0.73 0.66 0.08 92.80 350.50 19.75 12.80
30m N Y map 23.28 0.56 0.63 0.78 0.04 837.45 238.80 19.10 11.25
Y N map 72.99 0.53 0.73 0.66 0.09 92.80 349.90 19.65 12.95
Y Y plane-fitting 72.82 0.53 0.74 0.66 0.09 92.00 363.35 19.75 12.85
metrics=[
"num_frames",
"mota" .
n m Ot p n i
“Jdfa",

"mostly_tracked",
"mostly lost",
"num_false_positives",
"num_misses",
"num_switches",
"num_fragmentations",

1

name="acc",

#3 Motion Forecasting

The forecasting task is framed as: given the past input
coordinates of a vehicle trajectory V; as X; = (x%,y!) for
time stepst = {1, ..., Tops}, predict the future coordinates
Y = (2%, yt) for time steps {t = Topst1,-- - Tpred}-

e First step is to localize the object on the vector map
e The next steps in forecasting are
o Hypothesis phase
o Generation phase
e We use BFS to generate trajectories in the map which makes generation phase easy to run

e The problem is that trajectories are more complicated because of the multimodal nature of the problem,
e.g. it’s difficult to know which lane segment a vehicle will follow in an intersection.

e Demonstration: https://www.argoverse.org/index.htm|

https://www.argoverse.org/index.html

def bfs_enumerate_paths(graph: Mapping[str, Sequence[str]], start: str, max_depth: int = 4) -> Sequence[Sequence[str]]:
"""Run Breadth-First-Search. Cycles are allowed and are accounted for.

Find (u,v) edges in E of graph (V,E)

Args:
graph: Python dictionary representing an adjacency list
start: key representing hash of start/source node in the graph search
max_depth: maximum depth to traverse in graph from start node

Returns:
all_paths: list of graph paths

dists: MutableMapping[str, float] = {}

mark all vertices as not visited
for k, neighbors in graph.items():
dists[k] = float("inf")
for v in neighbors:
dists[v] = float("inf")

dists[start] = 0@

paths: Mutabl [Mutabl [str]]l = [
maintain a queue of paths
queue: Mutabl [Mutabl [str]] = [

push the first path into the queue
queue.append([start])
while queue: # len(q) > 0:
get the first path from the queue
path: MutableSequence[str] = queue.pop(0)
get the last node from the path
u: str = path[-1]
max depth already exceeded, terminate
if dists[u] >= max_depth:
break
enumerate all adjacent nodes, construct a new path and push it into the queue
for v in graph.get(u, []):
if dists[v] == float("inf"):
new_path: MutableSequence[str] = list(path)
new_path.append(v)
queue.append(new_path)
dists[v] = dists[u] + 1
paths.append(new_path)

return remove_duplicate_paths(paths)

def remove duplicate paths(paths: Seguence[Seguence[Any]]) -> Sequence[Sequence[str]]:

Motion Forecasting: Multimodal Evaluation

e Forecasting Task: Observe 20 past frames (2 seconds) and then predicting
10-30 frames (1-3 seconds) into the future

e Incorporate both social and spatial context to predict outcome

e COutput: a semantic graph

o Important to predict many possible outcomes and not just the most likely outcome
e On average, the heuristics generate 5.9 separate hypotheses for possible

vehicle trajectories
o Compact yet diverse set of forecasts

Motion Forecasting: Trajectory Prediction

Evaluated the effectiveness of numerous models in correctly

predicting the outcome.

Ex. Evaluate the effect of adding social context

Different combinations of Constant Velocity, Nearest Neighbor
(NN), Map (with various centerlines), LSTM (Long Short-Term
Memory) Encoder-Decoder Model, Social Context

LSTM Encoder-Decoder: A specific RNN designed to address
sequence-to-sequence problems (forecasting the next value in
a real-valued sequence)

Social Context: Interacting with pedestrians, leaving space
between the next car, etc. (social norms but with vehicles)

Constant Velocity

NN

NN-+map(oracle)

NN-+map

LSTM ED

LSTM ED+social

LSTM ED+map(oracle)
LSTM ED+map

LSTM ED+social+map(oracle)

Trajectory Prediction - Results

- Constant Velocity was outperformed by all other behaviors

- Failed to capture typical driving behavior (acceleration, deceleration, turns, etc.)
- LSTM ED + social performs similar to LSTM ED

- Social context does not add significant value to forecasting

- NN+map has a lower error than LSTM ED+social and LSTM ED

- Even a shallow model working on top of a vector map works better than a deep model with social

features and no vector map. 1 SECOND 3 SECONDS
BASELINE ADE FDE ADE FDE
Constant Velocity 1.04 1.89 3.55 7.89
NN 0.75 1.28 2.46 5.60
NN-+map(oracle) 0.82 1.39 2.39 5.05
NN+map 0.72 1.33 2.28 4.80
LSTM ED 0.68 1.78 2.29 5.19
LSTM ED+social 0.69 1.20 2.29 322
LSTM ED+map(oracle) 0.82 1.38 2.32 4.82
LSTM ED+map 0.80 1.35 2.25 4.67

LSTM ED+social+map(oracle) 0.89 1.48 2.46 5.09

Example: LSTM Encoder-Decoder + Map

3290 -;- gz;livc::terlines 600 -
o Predicted —
@ Target
3280 1
The model correctly 2=
1 H 3270 1 570 A =
predicts that the car will = =7 e o e v wwens -1 - z
H s L EEEET e i - el = 1
go straight at the = __ | 60
Intersection. 550 1
3250 4 —-==- Top-K centerlines
5401 @ Observed
@ Predicted
3240 A 5301 ¢ Target \
1i0 12'0 13'0 150 15'0 15’0 1:/0 14'60 14’80 15'00 15'20 15’40 15’60
Map X Map X
'i === Top-K centerlines -=-- Top-K centerlines
® Observed Ob: d
2340 i e Predicted 2350 4 : Presdez:d
. 1 ® Target @ Target
Demonstration of the 23] |
. 1 2340
multimodal nature of]
. > 2320 (bl mscommsg i Jeseooscen oeses - *
redictions, where the &~ |== e [s
g S £ 2330 g
. . =25
model considers all top-K 2303 | o ansme smmme se{RPii a0 M
. D H
possibilities. i 23204
1
1
E 23101
2290 i
-140 -130 -120 -110 -100 -90 -80 -70 —(110 120 130 140 150 160 170 180
Map X

The model correctly
predicts a smooth right
turn never going out of
the lane, which might have
been difficult if there were
no map.

The predictions are on a
non-typical lane which
takes a slight left and then
a slight right. Again, this is
hard to predict without a
map.

Next Steps

e Training the Argoverse data
e Adjusting our Unreal model to Argoverse and building direct simulations
taking parts of their projections

