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Batch Norm as regularization

 Each mini-batch is scaled by the mean/variance computed
on just that mini-batch.

* This adds some noise to the values z[!! within that
minibatch. So similar to dropout, it adds some noise to each
hidden layer’s activations.

* This has a slight regularization effect.

Bakchh Novm  of fet bime

P e winic bakdes M teb pek Ao We buie a hefuiake edtinste f/o,ﬂ

M, 7 esbnde \MWZ @(WM? wa‘jwwl aw?e (o wini - bakchw)

1y
{i | X(ﬁ’ XE?}/.- B X{L}



{L
A W —
e ,
~—_ Va z
T ~— i
| v
= Y 2 -M N N
B

‘We teep o VWW owerage of M omd & oo Wik loatthun

S%}’rww( R%{YUAI‘W CiE s a %fe ?f o Adkvaion  Jumdion [t hd,w bVo»»A\lmvm z

* (= # Umer
1]

‘V\:C~>WM+/UWMWNN

E E E O e v
O/
O >P(0&Bﬁlx}

CW%ZQ

<
Iﬂ%ﬂ
00000
[elelelele)

=C >
-
=
=




Adkivakion éwd’iw ’

Z[G
b = € ( y ,)
i ¢ g
a’- ) L
. t: @') i" elment &fj I

> G

iz

0. g4z u ,
0. 042 ool W —

0.002
0. 114

e 19377%1’ Q/(M ﬁm Z/ VeAF ;d’ D

6Vof|ﬂ Q&W: \/(HAMM ﬂ”MDh'WA oML Aﬂf“’“"’v

X1 Andrew Ng



—WQMI&L jeﬂf%max UM\L’[M

. gﬁ’rwr derm"w mej% Xﬁ%g{—t vamm}ew to C dowvier
- ‘If =2, @M%haug veduees [ %i&ﬁc rgrm'lm

Lex & (ot Funchoun

e i

()mou ot Desceml

Back prop:
OIZU _ 8/ J/

— ome Ol b

ov mksf . durivakives



Deep learning frameworks

* Caffe/Caffe2 Choosing deep learning frameworks
* CNTK - Ease of programming (development
e DL4J and deployment)

- Running speed

* Keras |

« Lasagne - Truly open (open source with good
governance)

* mxnet

* PaddlePaddle
* TensorFlow

* Theano

* Torch



